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ABSTRACT 

 Several targeting algorithms are developed and analyzed for possible future use onboard a 

spacecraft. Each targeter is designed to determine the appropriate propulsive burn for translunar 

injection to obtain desired orbital parameters upon arrival at the moon. Primary design objectives 

are to minimize the computational requirements for each algorithm but also to ensure reasonable 

accuracy, so that the algorithm‟s errors do not force the craft to conduct large mid-course 

corrections. Several levels of accuracy for dynamical models are explored, the convergence range 

and speed of each algorithm are compared, and the possible benefits of the Broyden and trust-

region targeters are evaluated. These targeters provide a proof of concept for the feasibility of a 

translunar injection targeting algorithm. Anticipating some future improvements, these algorithms 

could serve as a viable alternative to uploading ground-based targeting solutions and bypass the 

problems of delays and disruptions in communication, enabling the craft to conduct a translunar 

injection burn autonomously. 
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INTRODUCTION
*
 

 Previous lunar missions have relied heavily on ground-based computers to calculate required 

propulsive burns for translunar injection (TLI), and these calculations must then be uploaded to a 

spacecraft‟s guidance system.
 

For instance, the Apollo missions used the so-called 

“hypersurface,” a large series of polynomial curve-fits, to provide the targeting parameters to the 

guidance system.
1, 2, 3 

Recently though, interest has been expressed in developing an efficient and 

robust TLI targeting algorithm for use onboard a spacecraft. This would allow the spacecraft to 

navigate more autonomously and would be particularly useful in case communication with the 

ground is disrupted. Apollo engineers originally considered an onboard targeting algorithm for 

TLI, but ultimately rejected it to simplify the requirements for the real-time computer complex.
4
 

Recently, Marchand et al. have explored similar onboard targeting techniques for the Orion three-

maneuver trans-Earth phase.
5
 

  

                                                      

*
 Some portions of this paper were presented in, “An Onboard Targeting Algorithm for Lunar Missions” 

(Phillippe Reed, Greg Dukeman, and Evans Lyne) at the AAS/AIAA Spaceflight Mechanics Meeting in 

New Orleans, LA, 13-17 Feb. 2011. 



2 

 

DESIGN REQUIREMENTS AND METHODOLOGY 

 The purpose of this study was to develop and evaluate several variations on simple TLI 

targeting algorithms. The primary design requirements considered were computational speed, 

accuracy, and robustness. The algorithm must be simple enough to be used by onboard computers 

without requiring too much time or power, but accurate enough to require only small subsequent 

mid-course corrections. The algorithm must also be robust enough to start and operate 

autonomously for as wide a range of target parameters as possible. 

 The targeting algorithms were designed to calculate the required ΔV vector to depart from 

parking orbit around Earth, given the desired orbital parameters upon arrival at the moon (such as 

radius of perilune, latitude of perilune, inclination, etc.). To this end, a predictor-corrector 

technique was used. The predictor first assumes a velocity vector after TLI (i.e., a guess for an 

instantaneous change in velocity, ΔV vector) and the position vector of departure from the 

parking orbit. It then numerically integrates the equations of motion to determine the spacecraft‟s 

trajectory and the resulting orbital parameters about the moon. The calculated errors in orbital 

parameters from the initial guess constitute the objective function. The corrector then adjusts the 

initial state vectors to try to minimize the objective function (the errors), and the process is 

repeated until the required tolerance in each targeted orbital parameter is met. 

 Ideally, if the spacecraft‟s exact velocity, position, and time of arrival at the moon were 

prescribed by mission requirements, the launch time, position, and velocity could simply be 

determined by running one numerical integration backward in time until the spacecraft reaches 

the initial orbit location. In general, arrival parameters for a lunar mission need not be this strict, 

so there is often a wide range of possible departure times and velocities which must be 

considered. For the purposes of this investigation, the exact velocity and position vectors of the 

spacecraft and moon at perilune are considered irrelevant, and thus the inverse problem is useless 
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(since there would be infinitely many suitable initial conditions). Further, the inverse problem 

would still have to target the initial Earth parking orbit parameters. 

 One major challenge for developing these targeting algorithms is balancing the two typically 

opposing criteria of accuracy and simplicity. The targeter must be accurate enough that it will not 

force the craft to expend too much fuel on mid-course corrections, and it must be simple enough 

that it can operate quickly and without excessive computational power. Several methods were 

used to address this problem. 

 Since the iterative corrector scheme must call on the predictor step to perform the numerical 

integration several times, the speed of the predictor is crucially important. Therefore, several 

methods to improve the predictor‟s performance were evaluated: a variety of numerical 

integration schemes were compared to determine which ones offer the greatest accuracy for the 

lowest computational time; a method of stopping the numerical integration short and then 

calculating a subsequent analytical solution was considered to limit the time required for 

integration; and different levels of sophistication in the gravitational model and in generating 

planetary ephemeris data for the equations of motion were considered. Similarly, several 

corrector methods were analyzed to generate an accurate TLI state vector with as few iterations 

and function evaluations as possible. Analytical and empirical approximations for a “good” initial 

guess were also used to try to reduce the required number of iterations and improve convergence. 

 It was intended that any reasonable predictor-corrector combinations would be tested against a 

high-fidelity gravitational model. This would have ensured that the simplifying assumptions and 

numerical methods in each algorithm were responsible for only small mid-course corrections, 

relative to other factors, such as sub-nominal engine burns. Also, it would have been beneficial to 

compare any targeter‟s results to optimized trajectories from pre-existing software packages (like 

NASA‟s Copernicus program), particularly when considering the ∆V requirement. These tests 
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would have provided another means to compare each algorithm, but unfortunately, no such 

software packages could be obtained due to governmental restrictions and lack of funding. 
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DYNAMICAL MODEL 

 Several levels of sophistication were considered for the dynamical model to be used in the 

predictor. However, for simplicity, only gravitational forces were considered, either assuming 

spherically symmetric bodies or using spherical harmonics to model planetary oblateness. Both of 

these models ignore longitudinal gravitational asymmetries and non-uniform mass concentrations 

(mascons) in planetary bodies, atmospheric drag, radiation pressure, etc. 

 For either case, Newton‟s Law of Gravitation states that the gravitational force on any body 

(or any infinitesimal part of that body) from any other body is proportional to the product of their 

masses and inversely proportional to the square of the distance between them. For a system of N 

point masses or spherically symmetric bodies, the total gravitational force on any one body, Fi, is 

equal to the sum of the forces acting on that body by every other body, so
*
 

 

         
  

     
    

 

       

 (1) 

where G is the gravitational constant of proportionality, mi and mj are the masses of body i and 

body j, respectively, and rji is the position vector from body j to body i. Ignoring other forces and 

assuming the mass of each body to be constant, the acceleration can be written using Newton‟s 

second law of motion as 

 

   
   

  
 

    
   

 
  

  
     

  

     
    

 

       

 (2) 

Here ri and vi are the vectors indicating the position and velocity, respectively, of body i relative 

to the system‟s coordinate center, assuming an inertial reference frame. For most purposes, the 

                                                      

*
 See, for example, Ref. 11, pp. 5-9. 
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International Celestial Reference Frame (ICRF), tied to the solar system barycenter, can be used 

as such an inertial frame. 

 For the case of an oblate body modeled by spherical harmonics, the acceleration of an orbiting 

point mass is most conveniently determined in a local horizon coordinate frame. The radial 

component, ar, acts toward the primary body‟s centers of mass and the transverse component, at, 

acts perpendicular to the radial component and northward or southward toward the equatorial 

plane. The magnitudes of these components can be derived by integrating the gravitational 

potential over all infinitesimal masses inside the oblate body, and the first few terms in the series 

are given by
6
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(4) 

Here m and R are the primary body‟s mass and radius, respectively, r is the distance between the 

point mass and the primary, and φ is the co-latitude of the point mass (the angle between the 

primary body‟s polar axis and the line from its center of mass to the point mass). The coefficients 

J2, J3, and J4 are the Jeffrey‟s spherical harmonic constants unique to the primary body, and 

Pn(cosφ) indicates the n-th order Legendre polynomial of cosφ. Note that if the J constants are 

ignored, the radial acceleration in Eq. (3) reduces to the magnitude of the acceleration for a single 

body in Eq. (2). 

 Using Eqs. (2) through (4), a comparison was made between the magnitude of maximum 

relative accelerations experienced by a spacecraft traveling between Earth and the moon from the 

gravity of various solar system objects. Figure 1 shows these accelerations from Earth, the sun, 



7 

 

and the moon, and the maximum possible difference in acceleration caused by Earth‟s J2 

oblateness term (which occurs at φ ≈ 16.8º). The relative accelerations from other planets and the 

moon‟s oblateness were found to be several orders of magnitude smaller, as anticipated, and were 

not included in the graph or the gravitational model. Also as expected, the sun‟s gravity plays a 

significant role, contributing the highest relative acceleration of any object when the spacecraft is 

between about 0.7 and 0.9 lunar distances. Therefore the gravitational model was made to include 

the sun, as well as Earth and the moon. Although it decreases rapidly with distance from Earth, 

the acceleration from Earth‟s oblateness is significant near departure. This influence could cause 

considerable changes in the end state of a translunar trajectory. To determine the extent of this 

influence, the two separate dynamical models were both retained: one without any oblateness 

effects and one with J2 through J4 terms. 

 

 

Figure 1. Relative Accelerations on Spacecraft between Earth and the Moon. 
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EQUATIONS OF MOTION AND REFERENCE FRAMES  

 For the spherical body assumption, with Earth, the moon, the sun, and the spacecraft denoted 

by the subscripts „E‟, „M‟, „S‟, and „C‟, respectively, the following system of equations 

(assuming an inertial reference frame) results: 
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    (8) 

subject to the initial conditions in time, t: 

                                (9) 

                                (10) 

                                (11) 

                                (12) 

Because the mass of the spacecraft,   , is much less than the masses of Earth, the sun, and the 

moon, their equations of motion in Eqs. (5) through (7) can be uncoupled from the spacecraft‟s in 

Eq. (8): Earth, the sun, and the moon comprise a separate three-body system independent of the 

spacecraft, and determining the trajectory of the spacecraft is now the “restricted” 4-body 

problem. 

 If the gravitational influence on the spacecraft was limited to one body (N = 2), the analytical 

solution would simply be a conic orbit. For N > 2, the global solution has only recently been 

found (excluding the case of zero angular momentum) as a series expansion.
7
 However, this 

solution converges incredibly slowly, so numerical integration of the equations of motion is often 
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the most efficient means of obtaining results. Approximate methods, such as using two-body 

solutions with perturbations, are widespread, but not considered here. 

  Equations (5) through (8) all assume an inertial reference frame. In many cases it is 

convenient to express position, velocity, and acceleration relative to a moving reference frame. 

For a generic moving reference frame, with acceleration a0, angular velocity ω, and angular 

acceleration α relative to an inertial frame, the acceleration of the spacecraft relative to the 

moving frame, ac, is given by 

                              (13) 

where rp and vp are the position and velocity, respectively, of the body relative to the moving 

frame and ag is the equivalent gravitational acceleration that would be experienced in an inertial 

frame. For spherical gravitational forces, ag is given by Eq. (2), or for oblateness effects, by Eqs. 

(3) and (4). Equation (13) would be necessary for any frame geographically fixed to the surface 

of Earth, such as an Earth-centered, Earth-fixed frame.  

 Another common moving frame is the Earth-Centered Inertial (ECI) frame, which is fixed to 

the same directions as the ICRF (i.e., it does not rotate). It is not truly inertial, though, because its 

center accelerates due to Earth‟s movement around the sun (and to a lesser extent around Earth-

moon barycenter). For this case, Eqn. (13) reduces to 

          (14) 

and aE represents the acceleration of Earth (as the coordinate center, with respect to the solar 

system barycenter) due to the influence of the sun, moon, and other objects, approximated by 

      
  

     
 
     

  

     
 
    (15) 

Assuming a circular orbit of Earth about the sun with orbital speed, v, and no influence from the 

moon, the magnitude of this acceleration, aE, can be approximated roughly as 
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 (16) 

for rSE, the mean distance between the sun and Earth. This acceleration is approximately 0.006 

m/s
2
, considerably less than the acceleration from Earth‟s gravity that would be exerted on the 

spacecraft near Earth. However, at a distance of approximately 260,000 km from Earth (well 

within the distance traversed during a lunar mission), aE has roughly the same magnitude as ag. 

Thus for accurate lunar trajectories using Eq. (14) for an ECI frame, the acceleration of Earth 

cannot be neglected. 
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EPHEMERIS 

 There are two possible approaches to solving this problem with numerical integration. The 

motion of all four bodies can be computed: Earth, the sun, and moon together by Eqs. (5) through 

(7) and the spacecraft by Eq. (8) from the calculated positions of the those bodies. A more 

efficient approach, however, is to use either pre-calculated ephemeris tables or curve-fits for the 

locations of Earth, the moon, and the sun, eliminating the need for integrating Eqs. (5) through (7) 

at all. These ephemerides can be stored in computer memory and then used at any time to 

calculate the distance (and thus the acceleration) experienced by the spacecraft from the planetary 

bodies. If the positions of all the gravitationally influential bodies are known a priori from 

ephemerides, only one equation must be solved numerically, given the initial conditions in Eq. 

(12). This eliminates the computation of the positions of any planetary body, and the only added 

computational time is that required to look up positions of planets and perform simple arithmetic. 

Similarly, for the ECI frame, the acceleration of Earth as the coordinate origin can be obtained 

from the positions of the planetary bodies, and only one equation must be solved to determine the 

motion of the spacecraft. These ephemerides also give more accurate positions of planetary 

bodies, since they are calculated using gravitational influence from additional bodies and are 

corrected to fit astronomical observations. 

 To date, however, the only ephemeris implemented in the algorithm has been the DE 421 

ephemeris. This ephemeris was selected for its improved lunar accuracy over previous NASA 

JPL ephemerides.
8
 However, it is anticipated that such accuracy is not necessary, and other, faster 

methods of generating planet positions are being considered for implementation. For instance, 

curve-fits for lunar and solar positions (if found) could be used to quickly calculate planetary 

positions at a fraction of the computer memory required for the DE 421 ephemeris. Furthermore, 
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the ephemeris has only been accessed through NASA‟s CSPICE/MICE MATLAB interface, but 

accessing it directly by coding in C should be considerably faster. 
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ASSUMPTIONS 

 Some simplifying assumptions were made which limited the complexity of the problem and 

the types of trajectories to be considered. First, the allowable fuel/∆V budget for any lunar orbit 

insertion maneuvers was assumed to be inconsequential. Second, Earth parking orbit was 

assumed to be circular and in the plane of the moon‟s orbit around Earth. Third, the TLI burn was 

assumed to be instantaneous and in the plane of the spacecraft‟s parking orbit. Assuming that the 

sun‟s gravity does not contribute a significant out-of-plane perturbation, this means the transfer 

orbit must also be coplanar with the moon‟s orbit. This effectively predetermines the inclination 

of the craft‟s eventual path around the moon, eliminating lunar inclination as a required target 

parameter.
 *

 However, for the gravitational model which includes Earth‟s oblateness this is not a 

realistic assumption, because the transverse force serves to alter the inclination. Thus for the 

Earth oblateness model, either the inclination change must be approximated or the algorithm must 

also target inclination. Moreover, the inclination can be useful in determining whether the craft 

achieves a front-side or back-side flyby of the moon, as shown in Figure 2. Future algorithms 

could be made to include variable TLI burn times as well as non-coplanar trajectories. 

 For these assumptions, starting from a fixed-altitude circular Earth parking orbit, three initial 

state variables are sufficient to specify a unique translunar trajectory: the phase angle at 

departure, γ (equivalent to the time of departure from the specified parking orbit), the flight path 

angle, φ, and the magnitude of the velocity change, ∆V (Figure 3). Any desired target parameters,  

                                                      

*
 Of course, for a launch directly into Earth parking orbit from Cape Canaveral (at approximately 28° N 

latitude), these assumptions require that the launch occur when the inclination of the moon‟s orbit to 

Earth‟s equatorial plane is at least 28°. This is near the maximum lunar inclination to the equator, which 

occurs only once every 18.6 years according to the moon‟s nodal cycle. See Ref. 11, pp. 344. 
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Figure 2. Inclination for Lunar Flybys. 

 

 

 

 

 

Figure 3. Coplanar Lunar Transfer Departure Geometry. 
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such as radius and latitude of perilune, are then only a function of these three state variables. It 

should also be noted that a solution for the initial state variables meeting a given set of target 

parameters may or may not exist or be unique. 
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INITIAL CONDITIONS 

 The following steps must be taken to determine the appropriate initial conditions (in Cartesian 

coordinates) for a given set of initial state variables. First, the moon‟s position and velocity 

vectors relative to Earth (rm and vm, respectively) are determined from the ephemeris at a fixed 

date. The moon‟s specific angular momentum, hm, is simply the cross product of rm and vm. The 

craft is then assumed to be in line between Earth and the moon, with its position vector given by 

          
  

    
 (17) 

where Re is Earth‟s (equatorial) radius and A is the altitude of the circular parking orbit. The 

magnitude of the velocity vector in circular orbit is then 

 

    
   

    
 (18) 

Since the parking orbit is circular, its velocity vector, vc, must be perpendicular to rc. Since the 

parking orbit is restricted to be coplanar with the moon‟s orbit, vc must also be perpendicular to 

hm, and by the right-hand rule 

 
      

     

        
   (19) 

 The craft‟s initial position and velocity vectors must then be rotated in the orbital plane by the 

departure phase angle. This requires first transforming the vectors from the ephemeris reference 

frame to a frame fixed to the orbital plane, then rotating them in the orbital plane, and then 

transforming them back into the ephemeris frame. 

 The ephemeris frame is identified by X, Y, and Z axes. This frame must first be rotated about 

the Z-axis by the orbit‟s longitude of the ascending node (Ω) to align the X-axis with the nodal 

vector through Eq. (20). This establishes the intermediate frame [x1, y1, z1]
 T

. These axes must 

then be rotated about the x1-axis by the inclination (i) to align the z1-axis with the angular 
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momentum vector through Eq. (21). This establishes the orbital frame, [x2, y2, z2]
T
. Next, the 

rotation of –γ about the z2-axis is carried out in the orbital plane to establish the [x3, y3, z3]
 T

 

coordinate frame through Eq. (22). 

 
 

  

  

  
     

 
 
 
      

         
          

   
  (20) 

 
 

  

  

  

     

  

  

  
      

   
         
          

  (21) 

 
 

  

  

  

     

  

  

  

      
               
                

   

  (22) 

Finally the coordinate frames are transformed back into the frame of the ephemeris by the inverse 

(equivalent to the transpose) of the R1 and R2 rotation matrices. For initial coordinates in the 

ephemeris frame, [x, y, z]
 T

, the new coordinates [X, Y, Z]
 T

 are given by the rotation 

 
 
 
 
 
    

 
 
 
           

   
      (23) 

 Now rc is rotated to form the position vector for the initial conditions, rIC, by 

         (24) 

This rotation also applies to the velocity vector if the flight-path angle is zero (i.e., the TLI burn is 

conducted tangential to the path in the parking orbit). In this case, the velocity initial condition, 

vIC, is formed simply by adding the final state variable, ∆V magnitude, to the rotated circular 

velocity, Rvc, as 

 
          

   

  
     (25) 

If the flight-path angle is not zero, the angle of rotation for R3 in Eq. (22) is simply replaced by 

–(γ + φ), and the unique velocity rotation matrix is now labeled Rv. Then by trigonometry, vIC can 

be shown to be 
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            (26) 
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PREDICTOR 

Numerical Integration 

The governing differential equations (presented below only for an inertial system) are second 

order and non-linear in r. Thus, the position of the spacecraft must be determined by rearranging 

its equation into two first-order equations:
9
 

     

  
     

  

     
    

 

       

 (27) 

and 

    
  

    (28) 

The velocity may then be approximated for each time step with a numerical integration scheme 

such as the Euler or Runge-Kutta method, and in turn, the position can be approximated with a 

second numerical integration. 

 For the sake of example, the (explicit) Euler method with uniform ∆t time-step can be 

implemented for this problem for discretized velocity,     , and position,     , for the spacecraft 

as 

                            (29) 

where 

 

              
  

       
      

 

       

 (30) 

and 

                            (31) 

where 
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                 (32) 

Runge-Kutta and other methods of various order can be employed in a similar fashion. 

 The selection of a numerical integration scheme for the predictor is crucial to the efficiency of 

the targeting algorithm, because the corrector must call upon the integration scheme several 

times. Thus a variety of numerical integration schemes were compared to determine which ones 

offer the greatest accuracy for the lowest computational time. In order to evaluate the errors 

associated with different numerical integration schemes, the Earth-moon system was modeled by 

the simplified problem of two-body elliptical motion (using Earth and the moon). The results for 

the computational model were then compared to the analytical solution. It should be noted that 

this model is by no means an accurate representation of the Earth-moon system. It assumes an 

inertial frame of reference located at the Earth-moon barycenter. This is certainly not the case, 

since the Earth-moon system is revolving around the sun. However, the simplified model (albeit 

using incorrect assumptions) does have an analytical solution, and its time and length scales are 

on roughly the same order as those of translunar missions. Thus the Earth-moon two-body 

assumption provides an analytical solution as a baseline for comparison of numerical integration 

schemes. For this problem, the equation of motion for the position of the moon relative to Earth, 

r, is given by
*
 

    

   
  

        

    
  (33) 

 Unfortunately, the analytical solution provides the shape of each orbit and the time of flight as 

a function of orbital parameters. The inverse problem (“Kepler‟s problem”) of finding a body‟s 

                                                      

*
 The initial conditions for Earth and the moon were those given by the NASA HORIZONS ephemeris 

generator (using the DE 405 ephemerides) at 00:00:00 CT, 1 January 2010 for the ICRF tied to Earth mean 

equator (+z direction) and mean dynamical equinox (+x direction) of the J2000 epoch.  
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position as a function of time (which is precisely how the numerical approximations will operate) 

itself requires the numerical solution of a transcendental equation
*
. Thus, it would be beneficial to 

compare the model to the analytical solution by some means other than by the calculated position 

at each time. Two alternate methods were used for this purpose, as follows. 

 First, the total angular momentum of the system must be conserved. On a unit-mass basis, the 

specific angular momentum, h, is given by 

                               (34) 

and should be the same at any time. The specific angular momentum for the numerical scheme 

can then be calculated at any time and compared to its value from the initial conditions. The error 

at any time,       , is simply the difference between the two, that is 

                  

                                                    
(35) 

and the magnitude of the error,       , is simply 

                 (36) 

 Second, the period of the orbit, T, can be determined from the initial conditions by 

 

                    
  

         

    
 

  
 
 

 (37) 

The numerical scheme can thus be set to calculate the position and velocity at the period T. Since 

the position and velocity for the analytical solution at time t = T must be the same as the initial 

position and velocity, the errors,          and         , are simply the differences between 

the two values: 

                (38) 

                                                      

*
 See Ref. 11, pp. 177-222. 
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and 

                (39) 

and their magnitudes are given by their norms, as with the error in specific angular momentum. It 

should be noted that the calculation of T itself involves computer round-off error, but this is 

incredibly small and causes the same error in input into any numerical integration scheme. 

 Two types of ordinary differential equation solvers were considered for this problem: fixed 

time-step and variable time-step solvers. The fixed time-step schemes ranged from first to fifth 

order (ode1 through ode5). The variable time-step integrators were built-in MATLAB functions 

(ode23, ode45, etc.) which use at least two different orders of numerical integration schemes and 

are each best suited for different types of problems.
*
 For the fixed time-step solvers, the number 

of time steps was successively increased to improve accuracy, and for the variable time-step 

solvers, the maximum relative and absolute tolerances were decreased. For both types of solvers, 

the required computation times were recorded for each level of accuracy.
†
  

 Figure 4 shows the relationship between position accuracy and computation time for all of the 

fixed time-step solvers for one Earth-moon period of revolution (approximately 27.48 days). Note 

that the errors decrease for every method as the time-step is refined (i.e., the required computation 

time is increased). As expected, the slope of each curve is roughly the same as the order of the 

                                                      

*
 These codes were obtained from MathWorks, Inc. For more information, see documentation at 

http://www.mathworks.com/support/tech-notes/1500/1510.html 

and http://www.mathworks.com/help/techdoc/ref/ode113.html?BB=1 

†
 Two steps were taken to decrease the influence of fluctuations in computer processing. First, no other 

programs were run while the integration schemes were executed. Second, the computation times for each 

solver at each level of accuracy were averaged over a total of 25 runs. All integrations were performed on a 

Dell Precision T3400. 

http://www.mathworks.com/support/tech-notes/1500/1510.html
http://www.mathworks.com/help/techdoc/ref/ode113.html?BB=1
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integration scheme. Also note that the higher order solvers level off at an accuracy of 

approximately 0.015 m. This is the result of round-off error, and is effectively the limit of 

accuracy for the computer system used for this problem. If the lower-order solvers were allowed 

to run longer, they would be expected to level out at the same position error of about 0.015 m. 

Nearly identical results were observed for the specific angular momentum and velocity (Figures 5 

and 6, respectively). 

 The variable time-step solvers provided somewhat different results (Figure 7). These solvers 

typically have a slope that is much higher than the order of their numerical integration schemes 

when used with loose tolerances. Thus, unless a high level of accuracy is needed, these solvers 

provide a much greater improvement in accuracy than their fixed time-step counterparts for the 

same increase in computation time. After a certain level of accuracy, however, the slopes level off 

to the order of one of the solver‟s numerical integration schemes. 

 

 

Figure 4. Error in Position after One Period as a Function of Computation Time, Fixed Time-Step 

Solvers. 
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Figure 5. Error in Specific Angular Momentum after One Period as a Function of Computation 

Time, Fixed Time-Step Solvers. 

 

 

 

 

 

Figure 6. Error in Velocity after One Period as a Function of Computation Time, Fixed Time-Step 

Solvers. 
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Figure 7. Error in Position after One Period as a Function of Computation Time, Variable Time-Step 

Solvers. 
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time-step solvers require a start-up time to determine an appropriate step size to maintain the 
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the extraneous time required by the variable time-step solvers is significant, the solvers 
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  Figure 8 shows the superimposed position errors for the fixed time-step solvers and best 

performing variable time-step solvers. It is clear that the fifth-order fixed time-step method (ode5) 

outperformed all others, providing the highest accuracy in the shortest amount of time. However, 

it does not have the built-in error estimation that the variable time-step solvers have. Thus for 

translunar trajectories, with no analytical solutions, there is no way to estimate how much error is 

accumulated by using ode5. The ode45 solver was ultimately chosen, because it performed nearly 

as well as ode5 at high levels of accuracy, and because its intrinsic estimate of the error is a much 

more intuitive parameter to select than the number of time-steps required for ode5. 

 

 

 

Figure 8. Error in Position after One Period as a Function of Computation Time, Select Solvers. 
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Perilune 

 The time required for numerical integration was originally only limited by setting a maximum 

time-of-flight (thereby setting the end time). After the trajectory was integrated fully, the time of 

perilune passage was then found by determining the time at which the craft passed closest to the 

moon. A new approach was then implemented which allowed the integration to be stopped 

immediately at the time of perilune passage.
*
 At perilune passage, by definition, the distance 

between the spacecraft and the moon, d, must be a minimum (and go from decreasing to 

increasing).
†
 The square of this distance (in an x, y, z coordinate system) is simply 

             
           

 
          

  (40) 

and the time rate of change of this quantity is 

      

  
                                        

                     

(41) 

The time rate of change in d
2
 must be zero at perilune, and go from negative to positive. The 

ode45 integrator was therefore set to determine this event based on the positions and velocities at 

the current time-step, narrow in on the precise time and spacecraft location at perilune, and then 

cease integration. This prevented the excess computation time associated with integrating the 

trajectory fully and then determining when perilune occurred. 

 

                                                      

*
Adapted from MATLAB (7.6.0) Help File: Advanced Event Location – Examples - Differential 

Equations. 

†
 Note that if any calculated radius of perilune is smaller than the moon‟s radius (approximately 

1737 km), the trajectory actually results in a lunar impact. 
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Sphere of Influence Method 

 Another method was also considered to try to limit the extent of the required numerical 

integration. This method assumed regular 2-body Keplerian dynamics at arrival at the moon‟s 

sphere of influence. To test the accuracy of this assumption, a few trial trajectories were 

calculated with ode45. The radius of perilune, rp, was then calculated analytically at various 

points along the assumed trajectory relative to the moon (i.e., at various radii for the sphere of 

influence) as 

 
     

 
2

    1 +   
 (42) 

Here h is the magnitude of the specific angular momentum from Eq. (43) and e is the magnitude 

of the eccentricity vector, e, from Eq. (44) for the current position and velocity vectors, rc and vc, 

respectively. 

        c   vc  (43) 

 
e   

vc     c   vc 

   

 - 
 c

  c 
 (44) 

These values were compared to the actual radius of perilune determined from the fully 

integrated trajectory. The results for one particular trajectory, with a calculated radius of perilune 

of approximately 12,000 km, are shown in Figure 9. The magnitude of the error increases with 

the square of the distance. This is expected, since the gravitational force of the moon increases 

with the square of the distance, overshadowing the gravitational influence of Earth and the sun. 

Note that the standard radius for the lunar sphere of influence (about 66,000 km) gives a nearly 

12% underestimate of the true radius of perilune. Modest decreases in the assumed sphere of 

influence radius lead to significantly improved estimates of the perilune radius. However, it was 

decided to continue the numerical integration all the way to perilune to assure accuracy. Future  
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Figure 9. Error in Radius of Perilune for Kepler Assumption as a Function of Approach Distance 

(Sphere of Influence Radius). 

 

efforts may identify empirical relationships between the perilune radius error and the approach 

distance for a wide range of trajectories. This would enable the integration to be terminated 

earlier at the sphere of influence and most of the accuracy to be recovered simply by subtracting 

the error. 
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perilune were rotated from Earth-Centered Inertial frame for the numerical integration to the 

Mean Earth/Polar Axis (ME) lunar reference frame (with appropriate rotation matrices supplied 

by the MICE MATLAB interface).
*
 In this frame, with perilune position, velocity, and specific 

angular momentum vectors rp, vp, and hp, respectively, the latitude, λp, and inclination, ip, are 

given by 

 
          

   

    
   (45) 

 
          

   

    
   (46) 

where „z‟ indicates the vector component in the direction of the moon‟s polar axis. 

  

                                                      

*
 See “A Standardized Lunar Coordinate System for the Lunar Reconnaissance Orbiter and Lunar Datasets, 

LRO Project and LGCWG White Paper,” Version 5, NASA Goddard SFC, Greenbelt, MD, Oct. 2008. 
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INITIAL GUESSES 

 Any corrector requires an initial guess of the state variables to obtain the desired targeted 

parameters. If the guesses are too far away from a viable solution, the corrector will typically 

require too many iterations to converge or not converge at all. Thus, the accuracy of a first guess 

is crucial to the effectiveness of the corrector. Several ways of providing a good first guess were 

considered. First, a genetic algorithm can be used to randomly sample and evaluate potential 

trajectories to select one “good enough” for the corrector. Since the objective function requires 

lengthy numerical integrations, though, this method was not deemed feasible. Another method, 

used by Marchand et al., is to optimize many trajectories for a wide range of targeted parameters 

and tabulate the initial conditions, which can then be used as initial guesses for the corrector.
5
 

Miele et al. have already investigated optimal free-return trajectories for a model similar to those 

used in the predictor (only ignoring the sun‟s gravity and assuming a circular lunar orbit).
10

 For a 

perilune altitude of 100 km, their optimal ΔV for (tangential) TLI was 3.093 km/s at a departure 

phase angle of 132.5°. For a more accurate model, however, these numbers would necessarily 

fluctuate with the relative positions of Earth, the moon, and the sun. 

 Finally, various analytical approximations for the end state parameters can be used to 

determine a first guess. A patched conic approximation can be used to determine a reference 

trajectory assuming at any point the craft is only under the gravitational influence of one body, 

Earth or the moon. The minimum required ∆V occurs for a Hohmann elliptical transfer orbit, 

tangent to both the circular parking orbit and the moon‟s orbit around Earth, and can be shown to 

be approximately 

 

       
   

    
        

 

      
 

 

          
  (47) 
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For a 300 km altitude Earth parking orbit, this provides a reasonable first guess of about 3.1 km/s. 

Bate, Mueller, and White
11

 and Battin
12

 give iterative methods for determining analytical 

approximations for other departure conditions. Such analytical methods would likely be 

preferable to tables, since they would not require preloading any extra data for the targeting 

algorithm onto the onboard computer. However, these analytical methods have not been 

implemented yet, and for preliminary analysis it has been beneficial to tabulate trajectories to 

examine the dependence of the targeted parameters on the initial state variables. 

 In order to visualize the dependence of the perilune radius, latitude, and inclination on initial 

state variables, the flight-path angle φ was set equal to zero. The ∆V magnitude was then varied 

between 3 and 3.5 km/s and the departure phase angle γ between 70º and 200º, and the perilune 

states were tabulated for various parking orbit altitudes. The tolerance for the ode45 integration 

scheme was set at 1E-8 (km and km/s). 

 Figure 10 shows the variation of perilune radius with ∆V and γ for the gravitational model 

which does not include Earth oblateness. The time of departure (for calculating the moon‟s 

position and velocity for establishing a coplanar trajectory) for these trajectories was set at 

approximately 11pm, Jan.19, 2000 (UTC), corresponding to lunar perigee (approximately 

357,000 km). Note that the time of flight increases going from greater ∆V and γ (top right) to 

lower ∆V and γ (bottom left). Also note the curved blue band between departure phase angles of 

about 100º and 144º indicating the region in which the closest approach to the moon can be made 

(less than 50,000 km). A close-up of this region is shown in Figure 11. 

 The inclination contour (Figure 12) shows the expected constant inclination for either a front-

side or back-side lunar flyby: the left hand side (purple) for a front-side flyby at 173.2º and the 

right-hand side (blue) for a back-side flyby at 6.8º. Very small fluctuations (on the order of 0.02º) 

were observed, and are the result of the influence of the sun normal to the orbital plane. The  
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Figure 10. Radius of Pe ilune fo  Va ying ∆V and γ, Point-mass Gravitational Model, Departure at 

Lunar Perigee. 

 

 

 

  

Figure 11. Radius of Pe ilune fo  Va ying ∆V and γ between 106º and 144º, Point-mass Gravitational 

Model, Departure at Lunar Perigee. 
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Figure 12. Inclination fo  Va ying ∆V and γ, Point-mass Gravitational Model, Departure at Lunar 

Perigee. 

 

dividing line in the graph indicates the region in which lunar impact would occur and corresponds 

to the center of the region of lowest perilune radius in Figure 10. 

 The latitude of perilune (Figure 13) exhibits the same dividing line between front-side and 
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Figure 13. Pe ilune Latitude fo  Va ying ∆V and γ, Point-mass Gravitational Model, Departure at 

Lunar Perigee. 

 

since the lunar distance was greater. The perilune radius for this case is shown in Figure 14. Note  

that in addition to the slightly higher ΔV, the range of γ for the 50,000 km range is slightly 

smaller and shifted toward higher phase angles (about 110° to 146°). 
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Figure 14. Radius of Perilune fo  Va ying ∆V and γ, Point-mass Gravitational Model, Departure at 

Lunar Apogee. 
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CORRECTORS 

 From these plots of perilune radius and latitude, a target trajectory was selected in order to test 

a variety of corrector methods. For this simple test case with zero flight-path angle (with a fixed 

parking orbit altitude of 300 km and departure time of noon Jan11, 2000), the perilune radius and 

latitude are a function of ΔV and γ only, so the system is 2x2 square. A nominal trajectory 

resulting in a perilune radius of 1.5 lunar radii (2605.5 km) and latitude of 3° was found to occur 

at a ΔV of (approximately) 3.1034 km/s and a departure phase angle of 124.4°. This trajectory up 

to the time of perilune is shown in Figure 15, as observed from directly above the ecliptic plane 

(very nearly the orbital plane) in the Earth-Centered Inertial Frame. The hyperbolic lunar phase of 

the trajectory (non-rotating ME frame) is shown in Figure 16 for two hours before and after 

perilune passage. To improve convergence, all the variables were non-dimensionalized so they  

 

Figure 15. Nominal Translunar Trajectory for Targeted rp = 2605.5 km, λp = 3° (ECI Frame). 
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Figure 16: Nominal Translunar Trajectory for Targeted rp = 2605.5 km, λp = 3° (ME Frame). 

 

would have approximately the same scale. The perilune radius was divided by the moon‟s radius, 

ΔV and perilune latitude were scaled by 1 km/s and 1°, respectively, and γ was converted to 

radians. 

Four separate corrector methods were tested. First, a simple quasi-Newton Broyden algorithm 

(using the Sherman-Morrison update to the Jacobian) was coded. With no analytical relationship 

between the objective function (the error in the targeted parameters) and the initial state variables, 

a first-order forward finite difference approximation for the initial Jacobian matrix was used. In 

future efforts, central differences or variational techniques, such as those given by Ocampo and 

Munoz, could be considered for approximating the Jacobian.
13

 The three other correctors 

analyzed were MATLAB built-in optimization schemes: trust-region dogleg, Levenberg-

Marquardt, and Gauss-Newton. For each algorithm, the acceptable tolerances in perilune radius 

and latitude were set at 1m and 0.001°, respectively. 
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RESULTS 

 The initial guess was varied systematically in both ΔV and phase angle to analyze the 

performance of each targeting algorithm. Also, the step size for the initial finite difference 

approximation of the Jacobian for the Broyden method was varied. The number of required 

iterations for the Broyden method (up to 50) is shown in Table 1. Results are shown for a 

maximum variation of ±0.1% in initial ΔV and departure phase angle guesses (between 3.1003 

and 3.1065 km/s and between 124.28° and 124.53°) from the nominal trajectory. Outside of this 

range, the Broyden method‟s convergence was much less predictable, although it tended to be 

more forgiving of higher variations in phase angle than in ΔV. The targeter exhibited the best 

convergence for a finite-difference step size of 0.01 (km/s of ΔV and radians of departure phase 

angle). Despite its poor convergence, the Broyden method has the main advantage that it requires 

only one extra objective function evaluation (i.e., numerical integration of the equations of 

motion) per iteration. 

 The other targeters tended to converge much more reliably. The number of iterations and 

function evaluations required for convergence with the Gauss-Newton algorithm are shown in 

Table 2, Levenberg-Marquardt in Table 3, and trust-region in Table 4. The Gauss-Newton 

method required nearly seven function evaluations per iteration and did not converge for ΔV 

deviations of -0.1% and -0.08%. The Levenberg-Marquardt algorithm converged for every 

deviation over this range with 25 or fewer iterations, but still required on average about 5.5 

function evaluations per iteration. Finally, the trust-region method converged over the entire 

region with fewer than three function evaluations per iteration. The range for the trust-region 

method was then expanded ±1% deviation in ΔV and γ, and the method converged for all but 8 

out of 625 cases (1.3%). However, the farther away from the nominal case the initial conditions 

were, the more likely the targeter was to converge toward a second solution which yielded the   
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Table 1. Number of Broyden Targeter Iterations for Deviations in Initial Guess. 

    Departure Phase Angle Deviation 

  (%) -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 

 
  Step Size = 0.01 

Δ
V
 D
ev
ia
ti
o
n
 

-0.1 12 10 10 10 10 10 10 10 10 9 9 

-0.08 12 11 11 11 11 11 11 10 10 10 10 

-0.06 12 12 11 11 11 11 11 10 10 10 6 

-0.04 10 11 11 11 10 9 9 9 7 6 6 

-0.02 11 11 9 9 8 8 8 6 6 9 9 

0 9 7 7 7 6 0 3 7 7 9 7 

0.02 6 6 9 9 9 9 13 10 11 18 16 

0.04 20 36 35 NC 38 NC 20 26 NC NC 30 

0.06 16 19 27 15 22 22 22 27 24 45 35 

0.08 NC NC NC NC NC 44 25 33 30 NC 34 

0.1 NC NC 17 NC NC NC NC NC NC NC NC 

  

Step Size = 0.001 

Δ
V
 D
ev
ia
ti
o
n
 

-0.1 NC NC NC NC NC NC NC NC NC NC NC 

-0.08 NC NC NC NC NC NC NC NC NC NC NC 

-0.06 12 11 11 11 11 9 12 12 13 14 11 

-0.04 11 9 9 9 6 7 9 9 9 11 11 

-0.02 11 11 10 9 9 7 6 8 9 9 9 

0 7 7 7 7 6 0 6 6 7 9 10 

0.02 9 9 9 10 12 14 15 23 17 16 16 

0.04 10 10 10 18 18 18 21 43 25 42 47 

0.06 NC NC NC 43 NC NC NC NC NC 41 25 

0.08 NC NC 33 NC 38 NC NC NC 32 45 37 

0.1 NC NC NC NC NC NC NC NC NC NC NC 

    Step Size = 0.0001 

Δ
V
 D
ev
ia
ti
o
n
 

-0.1 NC NC NC NC NC NC NC NC 39 NC NC 

-0.08 NC NC NC NC NC NC NC NC NC NC NC 

-0.06 48 49 NC 33 NC NC NC NC NC NC NC 

-0.04 14 14 12 12 14 NC 28 24 22 30 NC 

-0.02 NC NC 27 27 24 NC NC 27 28 NC NC 

0 12 12 10 8 7 0 7 11 9 10 11 

0.02 17 16 16 16 16 14 14 13 13 13 12 

0.04 49 39 NC NC NC NC 27 NC NC 30 40 

0.06 35 NC 38 NC NC NC NC NC NC NC 44 

0.08 NC NC NC NC NC NC NC NC NC NC NC 

0.1 NC NC NC NC NC NC NC NC NC NC NC 

Note: “NC” indicates that the algo ithm did not conve ge within 50 ite ations. 
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Table 2. Number of Gauss-Newton Targeter Iterations and Function Evaluations for Deviations in 

Initial Guess. 

    Departure Phase Angle Deviation 

  (%) -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 

 
  Number of Iterations 

Δ
V
 D
ev
ia
ti
o
n
 

-0.1 NC NC NC NC NC NC NC NC NC NC NC 

-0.08 81 NC NC NC NC NC NC NC NC NC NC 

-0.06 50 66 30 21 21 62 40 25 48 23 21 

-0.04 10 15 15 18 19 19 21 22 23 24 27 

-0.02 4 6 8 7 8 8 9 8 10 10 9 

0 3 3 3 3 1 0 1 3 3 3 3 

0.02 12 12 11 11 10 11 11 11 11 10 9 

0.04 17 18 17 16 16 14 14 14 14 15 14 

0.06 17 25 13 11 14 10 19 10 NC 15 18 

0.08 11 11 49 61 74 10 11 NC 49 17 28 

0.1 9 25 21 8 8 8 11 7 13 8 8 

  

Number of Function Evaluations 

Δ
V
 D
ev
ia
ti
o
n
 

-0.1 501 501 501 501 501 501 501 501 501 501 501 

-0.08 495 502 502 502 502 502 502 503 503 503 502 

-0.06 314 410 204 142 141 385 263 168 301 153 137 

-0.04 69 100 100 119 124 124 137 143 149 155 173 

-0.02 28 40 54 48 54 54 60 54 67 67 60 

0 21 21 21 21 9 3 9 21 21 21 21 

0.02 79 79 73 72 66 72 72 73 73 66 60 

0.04 109 116 110 104 103 91 91 91 91 97 91 

0.06 116 159 89 75 93 69 125 68 502 102 118 

0.08 76 76 312 382 469 73 78 502 304 117 178 

0.1 59 173 144 54 55 55 75 49 86 55 56 

Note: “NC” indicates that the algo ithm did not conve ge within 500 function evaluations. 
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Table 3. Number of Levenberg-Marquardt Targeter Iterations and Function Evaluations for 

Deviations in Initial Guess. 

    Departure Phase Angle Deviation 

  (%) -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 

 
  Number of Iterations 

Δ
V
 D
ev
ia
ti
o
n
 

-0.1 8 8 8 8 8 8 8 8 8 8 8 

-0.08 6 7 7 7 7 7 7 7 7 7 8 

-0.06 5 6 6 6 6 6 6 6 6 6 6 

-0.04 15 17 17 17 19 19 21 21 23 23 25 

-0.02 4 4 4 4 4 8 8 8 8 8 9 

0 1 1 1 1 1 0 1 1 1 1 1 

0.02 23 17 13 8 8 21 17 9 5 4 5 

0.04 8 8 8 8 8 8 8 8 8 8 8 

0.06 9 9 9 9 9 9 9 9 9 9 9 

0.08 2 4 5 7 40 4 9 4 7 7 7 

0.1 6 6 6 6 6 6 6 4 4 15 13 

  

Number of Function Evaluations 

Δ
V
 D
ev
ia
ti
o
n
 

-0.1 39 39 39 39 39 39 39 39 39 39 39 

-0.08 32 35 35 35 35 35 35 35 35 35 39 

-0.06 28 32 32 32 32 32 32 32 32 32 32 

-0.04 63 70 70 70 77 77 84 84 91 91 98 

-0.02 21 21 21 21 24 39 39 39 39 39 43 

0 12 12 12 12 12 11 12 12 12 12 12 

0.02 91 70 56 38 38 84 71 43 28 21 29 

0.04 38 38 38 38 38 38 38 38 38 38 38 

0.06 42 42 42 42 42 42 42 42 42 42 42 

0.08 20 25 29 35 151 25 42 24 35 35 35 

0.1 32 32 32 32 32 32 32 25 25 63 56 
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Table 4. Number of Trust-Region Targeter Iterations and Function Evaluations for Deviations in 

Initial Guess. 

    Departure Phase Angle Deviation 

  (%) -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 

 
  Number of Iterations 

Δ
V
 D
ev
ia
ti
o
n
 

-0.1 12 12 12 12 12 12 12 12 12 12 12 

-0.08 21 21 21 21 21 21 21 21 21 21 21 

-0.06 18 18 19 21 17 13 20 28 23 20 20 

-0.04 7 7 7 7 7 7 7 7 7 8 12 

-0.02 6 6 6 6 10 13 13 13 10 10 10 

0 4 3 3 3 3 0 3 3 3 3 4 

0.02 10 10 11 11 10 10 14 10 13 7 9 

0.04 8 21 21 21 24 23 17 13 22 15 14 

0.06 14 15 15 15 15 15 15 15 15 15 14 

0.08 10 9 13 11 11 31 10 10 11 11 11 

0.1 15 15 15 15 15 15 15 15 15 15 13 

  

Number of Function Evaluations 

Δ
V
 D
ev
ia
ti
o
n
 

-0.1 33 33 33 33 33 33 33 33 33 33 33 

-0.08 58 58 58 58 58 58 58 58 58 58 58 

-0.06 51 51 54 60 46 38 57 77 66 53 53 

-0.04 22 22 22 22 22 22 22 22 22 25 33 

-0.02 21 21 21 21 29 36 36 36 31 31 31 

0 15 12 12 12 12 3 12 12 12 12 15 

0.02 29 29 30 30 27 27 41 31 36 24 28 

0.04 23 58 58 58 67 62 48 38 61 42 39 

0.06 37 40 40 40 40 40 40 40 40 40 37 

0.08 25 24 34 30 30 86 27 27 30 30 30 

0.1 38 38 38 38 38 38 38 38 38 38 34 
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same radius and latitude of perilune (at ΔV   3.1158 km/s and γ   136.9°). Even over the range of 

±10% deviations in ΔV and γ, the trust-region method converged nearly 75% of the time, 

although for the majority of those cases, it converged toward the second solution. 

The accuracy of the targeted solution with the point-mass gravitational model was then 

checked against the more realistic Earth oblateness model.  The perilune conditions for the more 

accurate trajectory were significantly different, with a perilune radius of 7910 km (a miss of over 

three lunar radii) and latitude of 5.56° (a miss of 2.56°). Clearly, the target parameters are highly 

sensitive to the non-spherical Earth gravitational perturbations. This was expected for the 

inclination and latitude. A better measure of the extent of this error, though, would be to 

determine the corrective midcourse ΔV required to retarget the desired orbital parameters. For 

instance, the spacecraft‟s guidance program could be used to calculate the ΔV necessary to put 

the spacecraft back on course as a result of the initial error from the simplified dynamic model. 

With a few modifications, the TLI targeting algorithms themselves could possibly be used for this 

purpose. Of course, this problem can be eliminated if the oblateness model is used for the 

predictor, but at the cost of excess computations at each time-step. It is also possible that the 

target miss errors from assuming a spherical Earth could be recovered by determining empirical 

relationships between the targets for both dynamical models. However, this would require extra 

computer overhead to store these relationships, either in tables or curve-fits. 
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CONCLUSIONS AND RECOMMENDATIONS 

 Ultimately, the Gauss-Newton and Levenberg-Marquardt correctors were determined to be too 

computationally costly, since they require so many more integrations of the equations of motion 

than the trust-region and Broyden methods. The trust-region method proved to be the most 

versatile corrector, much more likely to converge than the Broyden method. Moreover, poor 

selection of the initial step-size for the Jacobian for Broyden‟s method was detrimental to 

convergence. However, Broyden‟s method, when it did converge, did so with by far the fewest 

function evaluations. This is a significant advantage, since each function evaluation requires a 

lengthy numerical integration by the predictor. If the Broyden method is to be effective, however, 

future efforts must identify a better way of determining the initial guess, since only with very 

close initial guesses does the Broyden method converge. Either some feasible starting conditions 

must be tabulated or better analytical approximations must be incorporated into the algorithm. 

 Although much work remains to be done, the existing Broyden and trust-region targeters do at 

least provide a proof of concept for the feasibility of this type of TLI targeting algorithm. Future 

research will explore several options to significantly improve the targeter‟s versatility, reduce its 

required computation time, and verify its accuracy. As suggested, variational methods to 

approximate the Jacobian and additional methods of storing or calculating good first guesses will 

be studied to improve convergence rates. The targeter incorporating variable flight-path angle 

will be studied in detail. It is suspected that the trajectory (and the ΔV required) will be highly 

sensitive to changes in flight-path angle. The targeter will also be expanded to include a wider 

range of scenarios, such non-coplanar trajectories, and more targeted parameters, such as a free 

return to Earth. Less computationally costly ephemerides (if they can be found) will likely be 

incorporated into the predictor. Also, the algorithm should operate much faster once the 

associated codes are translated into a lower-level programming language required for 
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implementation onboard a spacecraft. Finally, any completed targeting algorithm should be tested 

against existing high-fidelity models. This will ensure that the simplifying assumptions and 

numerical methods in the algorithm are responsible for only small mid-course corrections relative 

to other factors, such as sub-nominal engine burns. 

Ultimately, a modification of these targeting algorithms is expected to provide the means for a 

spacecraft to conduct a TLI burn autonomously. Such an algorithm could reduce the need for 

uploading pre-calculated targeting information to the onboard computer and could bypass delays 

or disruptions in communication between the ground and the spacecraft. This would be incredibly 

useful in certain scenarios which would otherwise require an abort or alternate mission. In the 

future an algorithm of this kind could be applied to spacecraft on a wide variety of missions, 

provided they meet the minimum computational hardware and power consumption requirements. 
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Variation of Perilune Radius with Parking Orbit Altitude 

 

Figu e A1. Radius of Pe ilune fo  Va ying ∆V and γ, Point-mass Gravitational Model, A = 150 km. 

 

Figure A2. Radius of Pe ilune fo  Va ying ∆V and γ, Point-mass Gravitational Model, A = 200 km. 
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Figure A3. Radius of Pe ilune fo  Va ying ∆V and γ, Point-mass Gravitational Model, A = 300 km. 

 

 

Figure A4. Radius of Pe ilune fo  Va ying ∆V and γ, Point-mass Gravitational Model, A = 400 km. 
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Figure A5. Radius of Pe ilune fo  Va ying ∆V and γ, Point-mass Gravitational Model, A = 500 km. 
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